SmartCoCo: Checking Comment-code Inconsistency In

Smart Contracts via Constraint Propagation and Binding

Sicheng Hao, Yuhong Nan, Zibin Zheng, Xiaohui Liu

Tuesday, September 12, 2023

» X

LN -
© FTux % BELAB
NP HE B

EN U SUN YAT-SEN UNIVERSITY

WWW.INPLUSLAB.COM

Smart Contract

4"‘: ’-",,

\._.-‘]

_
« -

Programs running on blockchain

©opensea £ tether

NFT Token
Q
$ Compound h&‘ﬁ
Defi GameFi

Building different decentralized apps

Smart Contract Development

In 2022, over 7.75 million smart contracts were deployed on Ethereum.

Q4 2021 Q12022 | @22022 || a3z022 [Q42022
5.0m
4.0m
3.0m
2.0m
1.0m
0.0k

. Eth Libi Goerli S Mai S :
L1toL2Bridging T ntate Contracts D'::Irct)yed conta:::testD:)T;ed 16,102 DApps in DappRadar[2]

Source: Alchemy[1]

=..3 I A !; [1] https://alchemy.com/blog/web3-developer-report-q4-2022
EE B

[2] https://dappradar.com/ 3

Smart Contract Development

Comments are widely used and propagated in smart contracts.

_ 7. OpenZeppelin $ Compound
Library / Top DApp ERC20 ERC777 .
ERC721 ERC1155 };ﬂ‘ UNISWAP
Library DApp
Code & Comment
Add-ons
/// @dev Gets and updates a position with the given liquidity delta
/// @param owner the owner of the position
Smart Contract /// @param tickLower the lower tick of the position's tick range
/// @param tickuUpper the upper tick of the position's tick range

L

/// @param tick the current tick, passed to avoid sloads
function updatePosition(
address owner,
int24 tickLower,
DApp int24 tickupper,

int128 liquidityDelta,

Comment-code Inconsistency

B Comment-code Inconsistency (CCl)
» Program code may not be perfectly aligned with comments =+ CCI
» CCls are highly indicative of errors in either the comments or code

» CCls may bring confusion to app developers or end-users and even vulnerabilities

-
 [ICSE’11] acomment * [ISSTA18] Jdoctor « [ASE’20] CUP
* [ASE’ 17] Fraco « [FSE’20] C2S « [FSE’21] TDCleaner
9

Limited to specific languages or specific types of CCls

Comment-code Inconsistency

B CCls in Smart Contract
» Comments for smart contract functions could be security-critical

* @dev see {IERC2@-transferFrom}

* Emits an {Approval} event indicating the updated allowance. This is

* required by the EIP. See the note at the beginning of {ERC20}.

/// @notice Updates the owner of the factory

- “from™ and "to cannot be the zero address.

/// @dev Must be called by the current owner
- "from™ must have a balance of at least “wvalue™.

@param owner The N owner of the factory
- the caller must have allowance for ~~from ~'s tokens of at least /71 ep —)

*

“value™.

y \ Non-zero & overflow check

function transferfFrom(address from, address to, uint256 value) public

function setOwner(address\@gwner) external;

Access control check

Openzeppelin Library Contract Uniswap V3

=i lAD 6

Comment-code Inconsistency

B CCls in Smart Contract
» Audit comment-code inconsistency in smart contract

QSP-11 Misaligned comments and implementation

[LO8] Misleading comments

Status: Fixed

The following comment!

File(s) affected: Ra 2.3.3 Make the codes and comments consistent
1 ¢ Inthe constructor of

passes.” This could b Status Fixed

only applies to the f¢ Description
e Inthe _updateConfig As shown in the following codes, the comments in L75 says: "Check that the ca
R N role", while the codes do not force it.

74 function burn(uint256 amount) external override {

Such inconsistencies can cause significant losses to the contract owner and users.

Comment-code Inconsistency

m Real-world Example

RigoBlock
@RigoBlock

RigoBlock has been hacked. All tokens in Dragos but ETH and USDT are
at risk due to an exploited protocol vulnerability. The fix will require a
major protocol upgrade, please don’t use RigoBlock.

12:40 AM - Feb 18, 2022

1Repost 1Quote 2Likes
0 Q N X

Who can reply?
People @RigoBlock mentioned can reply

RigoBlock @RigoBlock - Feb 18, 2022
Purchases and sales of RigoBlock pools is safe, everyone looking to
withdraw their own funds can do that without risk.

1 n Q1 ihi &

Source: [1]

VULNERABILITIES

JIXCVE-2022-25335 Detail

Description

RigoBlock Dragos through 2022-02-17 lacks the onlyOwner modifier for setMultipleAlloy
manipulation, as exploited in the wild in February 2022. NOTE: although 2022-02-17 is t

announcement date, the vulnerability will not be remediated until a major protocol upg

Source: NVD[2]

I Hacked target: RigoBlock

Description of the event: RigoBlock has been hacked. All tokens in Dragos except ETH and USDT are
returned funds to the affected RigoBlock pool, leaving only 10% of the bug bounty reward.

Amount of loss: 160.86 ETH Attack method: Contract Vulnerability
Source: SlowMist[3]

[1] https://twitter.com/RigoBlock/status/1494351180713050116

= '3 [2] https:/nvd.nist.govivuln/detail/ CVE-2022-25335
EE B [3] https://hacked.slowmist.io/

Comment-code Inconsistency

. Real-world Example I contract Drago is Owned, SafeMath, ReentrancyGuard{

2 ///Rdev Allows owner to set an allowance...
function setAllowance (address _token, ...)
. . external onlyOwner
» An inconsistency of access control whenApprovedProxy (_tokenTransferProxy) {

6 require (setAllowancesInternal (...);

A

1 8

> Green baCkground 9 ConSIStenCy 9 /** @dev Allows owner to set allowances to

10 multiple approved tokens with one call. =x/

. . 11 function setMulAllowances (address _token, ...)
» Red background - inconsistency external |
3 for (uint256 i = 0; i < _tokens.length; i++) {
if (!'setAllowancesInternal(...)
continue;

B W

b}

18 /// @Qdev Allows owner to set an ...

setMulAllowances Only allows the 19 function setAllowancesInternal (...)

owner to invoke, while the external - internal returns (bool) {
function has no access control 7 Sk (el | (ERkDa) oEjR S (o o ol g
22 return true;

Automatically reporting potential CCls in smart contracts is in urgent need.

=i lAD

Problem Statement

B Checking CCls in Smart Contracts

» Check CCls in smart contracts at the function level

» We focus on three security-critical comment types

Type Example

. Only available to the current CEO.
Role Permission

Allows owner to set allowances to multiple tokens.

from and to cannot be the address(0).
Parameter Scope

Threshold must be greater than the hardcoded min.

Emit an {Approval} event.
Event Emission {App }

This function emit a {Transfer} event.

=i LAD 10

SmartCoCo

B Overview

Smart
Contracts

/*Allow owner to ...*/

// “from" can not be 0.

Comments

/ Comment Constraint Extractor \

Role(Dra, sMA, owner)

// Emit Transfer event. - Event(ERC20, tra, Transfer)

Constraints

1

Code Fact Extractor

£
@ -
®
\ AST

/
™

HasFn(ct, fn, internal)

HasReq(ct, fn, expr)

Facts

%

=i lAD

Constraint Analyzer

setMulAllowances()
Role(Dra, sMA, owner)

HasFn(Dra, sMA, external)
HasFn(Dra, sAl, internal)

\
Inconsistency Detector

i Type Matching |
i Entity Matching i
Mapping Rules

Inconsistency
Results

11

Comment Constraint Extraction

B Comment Constraint Types

» Three security-critical comment types

» One additional constraint type: Comment Inheritance

Constraints Description
Role Permission Role(c:Ct, f:Fn, role:Str) Only role can invoke c.f.
Parameter Scope Param(c:Ct, f:Fn, e:Exp) Function c.f has a parameter scope with e.
Event Emission Event(c:Ct, f:Fn, e:Str, m:Bool) Function c.f (may) emits an e event.
Comment Inheritance Inherit(sc:Ct, sf:Fn, ic:Ct, if:Fn) Comments of sc.sf inherits from ic.if.

s | AD 12

Comment Constraint Extraction

B Comment Constraint Extraction

/** @dev Allows owner to set allowances to

Comment preprOceSSIng w multiple approved tokens with one call. x*/

11 function setMulAllowances (address _token, ...)

« <contract, foo, content>

+ Text transformation
<Drago, setMulAllowances, Allows owner to set

allowances to 10 multiple approved tokens>

Constraint
templates

Allows || owner || to set allowances || to multiple || tokens |

VBZ NN TO VB NNS IN 1 NNS

Constraint finding

« Keyword-based templates
« POS tagging filtering Role(Drago, setMulAllowances, owner).

=i lAD 13

Code Fact Extraction

B Code Fact Definition & Extraction

» A set of code facts P(x1, ..., Xn) Code Fact Description
HasContract(c:Ct, t:Ctype) Contract c is type t.

» Constraint -: P1 (X1 . ’Xn)’ P2(X1 . ,Xn), . HaslInherit(c:Ct, ic:Ct) Contract ¢ inherits from Contract ic.
HasFunction(c:Ct, f:Fn, v:Vtype) Contract c has a function named £ with the

visibility v.

Source Unit FIsImplemented(c:Ct, f:Fn) Function c. f has implementation.

FHasParam(c:Ct, f:Fn, p:List) Function c. £ has params p.
/\ FHasMod(c:Ct, f:Fn, m:Fn) Function c. £ has modifiers m.
FHasEmit(c:Ct, f:Fn, e:Str)

Function c. £ emits an event e.

Interface Contract FHasReq(c:Ct, f:Fn, e:Exp, m:Str) Function c. f has a require expression e with
Definition Definition an error message m.
%\ FHasCall (sc:Ct, sf:Fn, a:List Function sc.sf has a call with arguments a
cc:Ct, cf:Fn, p:List) to the function cc.cf with parameters p.
Variable Function Function Ct: Contracts in a smart contract. Ctype € {contract, interface, library}
Declaration Definition Definition Fn: Functions in a smart contract. Vtype € {external, public, internal, private }

List: Lists of parameters and arguments in functions and calls of a smart contract.
Exp: Expressions in a smart contract, including arithmetic and logical expressions.

Smart Contract AST Selected code facts for further analysis

=i lAD 14

Constraint Propagation and Binding

B Comment Propagation & Binding

Explicit Propagation Implicit Propagation

Cmt(ct, fn) : — Cmit(ict, fn), HasInherit(ct, ict),

Cmt(ct, fn) : — Cmit(ict,ifn), Inherit(ct, fn,ict,ifn) HasContract(ict, interface)

_ @inheritdoc IUniswapV3Factory .
c . e N interface TERC20 {
external override ({ / ;Tlfﬁ a {Transfer} event. .
require (msg.sender —— owner); function| transfer (address to, uint256 amount)
emit OwnerChanged (owner, _owner); external returns (bool);
owner = _OWner; }
Uniswap
/// @dev See {IERC721l-balanceOf}.
function patanceof (Fddress owner) contract ERC20 is Context, IERC20{
public view virtual returns (uint256) (function transfer (address to, uint256 amount)
if (owner == address(0)) publiec virtual override returns (bool) ({
revert ERC721InvalidOwner (address (0)); address owner = _msgSender();
} return _balances[owner]; _transfer (owner, to, amount);
}}
Token Azuki

s | AD 15

Constraint Propagation and Binding

m Code Propagation & Binding

» Fact-powered call graph (FCG)

« A subset of origin graph by eliminating functions without code facts

« Each node contains additional attributes on comment and code Ct: Drago
Fn: setMulAllowances

Param: [_token, ...]

setAllowance setMulAllowances
Code:
Flsimplemented(Drago, ...
: FHascCall(..., ..., ...)
[“tokenTP, _token, _amount] contain
Comment:

All
fnitemg}/vances Role(Drago, ..., owner)
HasFunction(_,_, type)

\nfef

[_tokenTP,| amount]
External function
(Entry Point)
FHasCall(_,_, arg,_,_,param)

A rove .
PP Internal function

16

Constraint Propagation and Binding

m Code Propagation & Binding

» Propagation along Call Chains

» External function
* Entry point

I @\ @
» Internal function
1 I » Context-sensitive

External Internal

setAllowance setMulAllowances

Arguments to Parameters

External function
[_tokenTP,| amount] (Entry Point)

Internal function

Approve

. Propagated facts(PF):

. PF(a): F(a) U F(c) U F(d)

. PF(c) from a: F(a) U F(c) U F(d)
PF(c) from b: F(b) U F(c) U F(d)

__

17

Inconsistency Detection

B Match Constraints with Code Facts

Type Matching Entity Matching
> Select corresponding code > Numbers & Expressions
facts for specific constraint _ « Equivalent
» Strings
Event(_, ,) FHasEmit(_, ,)

Similar at the character-level
Param(_, _, = > b) FHasReq(_, _, _,) « Abbreviations

Mapping Rules

18

Evaluation

B RQs

» Prevalence: What is the prevalence of proposed security-related CCls in smart contracts?
» Precision: What is the effectiveness of SmartCoCo in detecting CCIs?

» Performance: What is the performance in checking a smart contract with constraints?

=i lAD 19

Evaluation Setup

Setup

Dataset

</> Python 3.10

j Slither, CoreNLP, ...

Implementation

20 multiple processes

) (/
% Repeat experiments 3 times

Conduction

=i lAD

+

3

+
e — 230,548 from Etherscan
l2—®

(-1

o=

—

ool

|| 139,424 unique contracts

Solidity Contract

Full

Version > 0.4.11
No compilation errors

101,780 unique contracts
Dataset

20

Prevalence

B Extracted Comments and Constraints

» 74,926 smart contracts containing 1,818,665 function comments

» SmartCoCo extracts 419,116 comment constraints in 39,372 smart contracts

Smart Contract # Comment Constraint

Role Permission 29,963 45,725
Parameter Scope 11,582 144,653
Event Emission 21,462 137,992
Comment Inheritance 10,810 90,746
ALL 39,372 419,116

Distribution of extracted comment constraints

21

Prevalence

B Ildentified CCls and Distributions

» SmartCoCo detects 4,732 inconsistencies in 1,745 smart contracts

Consistency (CCC) Inconsistency (CCI)

Type

Smart Contract # Instance # Smart Contract # Instance

Role Permission 25,951 39,781 482 697
Parameter Scope 10,940 129,171 296 507
Event Emission 14,981 122,191 995 3,528
ALL 34,639 291,143 1,745 4732

Distribution of identified CCCs and CCiIs.

=i LAD

22

Precision

B Precision Results

» Manually-labeled 439 unique CCls

» Overall, SmartCoCo achieves a precision of 79.3%.

oo

Role Permission 74.7%
Parameter Scope 146 116 30 79.5%
Event Emission 99 87 12 87.9%
ALL 439 348 91 79.3%

Precision of SmartCoCo over the manual-labeled CCls

=i LAD 23

Precision

m Effectiveness of Propagation and Binding

» The position between comment and code

0 .
> More than 60/0 comment constraints L1 Cross Function [| Inner Function

I : - o
Implemented in another function
32.43% As{plice
80% 1 39.59%
60% -
96.59%
40% A 0 73.39%
o7 60.41%
Modifiers account for 91.85% 20%
3.41%

0% ! T T T
Role Permission ~ Parameter Scope = Event Emission Full

H B
2:LAD 24

Performance

B Average Analysis Time

» All contracts with different versions are successfully analyzed
» Split Full dataset - Small, Medium, and Large subsets

» SmartCoCo takes only 2.64 seconds to analyze a contract on average.

- Small 1/3 Medium 1/3 Large 1/3

Code 1.3547 2.2020 4.3698
2.6411
Comment 1.9017 2.4915 3.6671

Detection time (in seconds)

25

Summary

B Comment-code Inconsistency

» SmartCoCo presents a static framework to detect comment-code inconsistency
for smart contracts with a set of propagation and binding mechanisms

» SmartCoCo reports 4,732 inconsistencies from 1,745 smart contracts, and
achieves a precision of 79% on 439 manual-labeled unigue inconsistencies

» SmartCoCo explores a new direction to enhance the security of smart contracts

=i lAD 26

SmartCoCo: Checking Comment-code Inconsistency in Smart
Contracts via Constraint Propagation and Binding

Email: haosch@mail2.sysu.edu.cn

	幻灯片 1
	幻灯片 2: Smart Contract
	幻灯片 3: Smart Contract Development
	幻灯片 4: Smart Contract Development
	幻灯片 5: Comment-code Inconsistency
	幻灯片 6: Comment-code Inconsistency
	幻灯片 7: Comment-code Inconsistency
	幻灯片 8: Comment-code Inconsistency
	幻灯片 9: Comment-code Inconsistency
	幻灯片 10: Problem Statement
	幻灯片 11: SmartCoCo
	幻灯片 12: Comment Constraint Extraction
	幻灯片 13: Comment Constraint Extraction
	幻灯片 14: Code Fact Extraction
	幻灯片 15: Constraint Propagation and Binding
	幻灯片 16: Constraint Propagation and Binding
	幻灯片 17: Constraint Propagation and Binding
	幻灯片 18: Inconsistency Detection
	幻灯片 19: Evaluation
	幻灯片 20: Evaluation Setup
	幻灯片 21: Prevalence
	幻灯片 22: Prevalence
	幻灯片 23: Precision
	幻灯片 24: Precision
	幻灯片 25: Performance
	幻灯片 26: Summary
	幻灯片 27

