
SmartCoCo: Checking Comment-code Inconsistency in

Smart Contracts via Constraint Propagation and Binding

Sicheng Hao, Yuhong Nan, Zibin Zheng, Xiaohui Liu

Tuesday, September 12, 2023

Smart Contract

2

TokenNFT

Defi GameFi

Programs running on blockchain Building different decentralized apps

Smart Contract Development

3

In 2022, over 7.75 million smart contracts were deployed on Ethereum.

Source: Alchemy[1]

16,102 DApps in DappRadar[2]

[1] https://alchemy.com/blog/web3-developer-report-q4-2022

[2] https://dappradar.com/

Smart Contract Development

4

Comments are widely used and propagated in smart contracts.

Library / Top DApp

Smart Contract

DApp

ERC20

ERC721
ERC777

ERC1155

Code & Comment

Add-ons

Library DApp

Comment-code Inconsistency

5

• [ICSE’11] acomment

• [ASE’ 17] Fraco

Limited to specific languages or specific types of CCIs

• [ISSTA’18] Jdoctor

• [FSE’20] C2S

• [ASE’20] CUP

• [FSE’21] TDCleaner

◼ Comment-code Inconsistency（CCI）

➢ Program code may not be perfectly aligned with comments CCI

➢ CCIs are highly indicative of errors in either the comments or code

➢ CCIs may bring confusion to app developers or end-users and even vulnerabilities

Comment-code Inconsistency

◼ CCIs in Smart Contract

6

➢ Comments for smart contract functions could be security-critical

Openzeppelin Library Contract Uniswap V3

Non-zero & overflow check Access control check

Comment-code Inconsistency

◼ CCIs in Smart Contract

7

➢ Audit comment-code inconsistency in smart contract

Openzeppelin Library Contract Uniswap V3

None zero & overflow check Access control check

Such inconsistencies can cause significant losses to the contract owner and users.

Comment-code Inconsistency

◼ Real-world Example

8

Source: [1]

Source: NVD[2]

Source: SlowMist[3]

[1] https://twitter.com/RigoBlock/status/1494351180713050116

[2] https://nvd.nist.gov/vuln/detail/CVE-2022-25335

[3] https://hacked.slowmist.io/

Comment-code Inconsistency

◼ Real-world Example

9

➢ An inconsistency of access control

➢ Green background → consistency

➢ Red background → inconsistency

`setMulAllowances` only allows the

owner to invoke, while the external

function has no access control

Automatically reporting potential CCIs in smart contracts is in urgent need.

Problem Statement

◼ Checking CCIs in Smart Contracts

10

Type Example

Role Permission
Only available to the current CEO.

Allows owner to set allowances to multiple tokens.

Parameter Scope
from and to cannot be the address(0).

Threshold must be greater than the hardcoded min.

Event Emission
Emit an {Approval} event.

This function emit a {Transfer} event.

➢ Check CCIs in smart contracts at the function level

➢ We focus on three security-critical comment types

SmartCoCo

◼ Overview

11

Comment Constraint Extraction

◼ Comment Constraint Types

12

Type Constraints Description

Role Permission Role(c:Ct, f:Fn, role:Str) Only role can invoke c.f.

Parameter Scope Param(c:Ct, f:Fn, e:Exp) Function c.f has a parameter scope with e.

Event Emission Event(c:Ct, f:Fn, e:Str, m:Bool) Function c.f (may) emits an e event.

Comment Inheritance Inherit(sc:Ct, sf:Fn, ic:Ct, if:Fn) Comments of sc.sf inherits from ic.if.

➢ Three security-critical comment types

➢ One additional constraint type: Comment Inheritance

Comment Constraint Extraction

◼ Comment Constraint Extraction

13

Constraint

templates

Comment preprocessing

Constraint finding

• Keyword-based templates

• POS tagging filtering

• <contract, foo, content>

• Text transformation

Role(Drago, setMulAllowances, owner).

<Drago, setMulAllowances, Allows owner to set

allowances to 10 multiple approved tokens>

Code Fact Extraction

◼ Code Fact Definition & Extraction

14

Source Unit

Interface

Definition

Contract

Definition

Variable

Declaration

Function

Definition

Function

Definition

Smart Contract AST

➢ A set of code facts P(x1, ..., xn)

➢ Constraint -: P1(x1,…,xn), P2(x1,…,xn), …

HasContract(ct, type)

…

…

Selected code facts for further analysis

Constraint Propagation and Binding

◼ Comment Propagation & Binding

15

Uniswap

Explicit Propagation Implicit Propagation

Token Azuki

Constraint Propagation and Binding

◼ Code Propagation & Binding

16

a b

d

External function
(Entry Point)

Internal function

setAllowance setMulAllowances

setAllowances

Internal

Approve

c

[_tokenTP,_amount]

[_tokenTP, _token, _amount]

➢ Fact-powered call graph (FCG)

• A subset of origin graph by eliminating functions without code facts

• Each node contains additional attributes on comment and code Ct: Drago

Fn: setMulAllowances

Param: [_token, …]

Code:

FIsImplemented(Drago, …)

FHasCall(…, …, …)

…

Comment:

Role(Drago, …, owner)

HasFunction(_,_, type)

FHasCall(_,_, arg,_,_,param)

contain

Constraint Propagation and Binding

◼ Code Propagation & Binding

17

Propagated facts(PF)：

PF(a): F(a) ⋃ F(c) ⋃ F(d)

PF(c) from a: F(a) ⋃ F(c) ⋃ F(d)

PF(c) from b: F(b) ⋃ F(c) ⋃ F(d)

…

➢ Propagation along Call Chains

a

d

c

External function
(Entry Point)

Internal function

a

d

c

b

① ②

External Internal

a b

d

setAllowance setMulAllowances

setAllowances

Internal

Approve

c

[_tokenTP,_amount]

[_tokenTP, _token, _amount]

Arguments to Parameters

External function

• Entry point

Internal function

• Context-sensitive

Inconsistency Detection

◼ Match Constraints with Code Facts

18

Mapping Rules

Entity MatchingType Matching

• Similar at the character-level

• Abbreviations

➢ Select corresponding code

facts for specific constraint

Event(_, _, Record) FHasEmit(_, _, _)

Param(_, _, a > b) FHasReq(_, _, _, _)

➢ Strings

➢ Numbers & Expressions

• Equivalent

Evaluation

19

◼ RQs

➢ Prevalence: What is the prevalence of proposed security-related CCIs in smart contracts?

➢ Precision: What is the effectiveness of SmartCoCo in detecting CCIs?

➢ Performance: What is the performance in checking a smart contract with constraints?

Evaluation Setup

20

Setup Dataset

230,548 from Etherscan

139,424 unique contracts

Full Dataset

Solidity ContractImplementation

Conduction

Version > 0.4.11

No compilation errors

101,780 unique contracts

Python 3.10

Slither, CoreNLP, …

20 multiple processes

Repeat experiments 3 times

Prevalence

21

◼ Extracted Comments and Constraints

Type # Smart Contract # Comment Constraint

Role Permission 29,963 45,725

Parameter Scope 11,582 144,653

Event Emission 21,462 137,992

Comment Inheritance 10,810 90,746

ALL 39,372 419,116

Distribution of extracted comment constraints

➢ 74,926 smart contracts containing 1,818,665 function comments

➢ SmartCoCo extracts 419,116 comment constraints in 39,372 smart contracts

Prevalence

22

◼ Identified CCIs and Distributions

Type
Consistency (CCC) Inconsistency (CCI)

Smart Contract # Instance # Smart Contract # Instance

Role Permission 25,951 39,781 482 697

Parameter Scope 10,940 129,171 296 507

Event Emission 14,981 122,191 995 3,528

ALL 34,639 291,143 1,745 4732

Distribution of identified CCCs and CCIs.

➢ SmartCoCo detects 4,732 inconsistencies in 1,745 smart contracts

Precision

23

◼ Precision Results

Type # CCI # TP # FP Precision

Role Permission 194 145 49 74.7%

Parameter Scope 146 116 30 79.5%

Event Emission 99 87 12 87.9%

ALL 439 348 91 79.3%

Precision of SmartCoCo over the manual-labeled CCIs.

➢ Manually-labeled 439 unique CCIs

➢ Overall, SmartCoCo achieves a precision of 79.3%.

Precision

24

◼ Effectiveness of Propagation and Binding

➢ The position between comment and code

➢ More than 60% comment constraints

implemented in another function

Modifiers account for 91.85%

Performance

25

◼ Average Analysis Time

Small 1/3 Medium 1/3 Large 1/3 Average

Code 1.3547 2.2020 4.3698

2.6411

Comment 1.9017 2.4915 3.6671

Detection time (in seconds)

➢ All contracts with different versions are successfully analyzed

➢ Split Full dataset → Small, Medium, and Large subsets

➢ SmartCoCo takes only 2.64 seconds to analyze a contract on average.

Summary

26

◼ Comment-code Inconsistency

➢ SmartCoCo presents a static framework to detect comment-code inconsistency

for smart contracts with a set of propagation and binding mechanisms

➢ SmartCoCo reports 4,732 inconsistencies from 1,745 smart contracts, and

achieves a precision of 79% on 439 manual-labeled unique inconsistencies

➢ SmartCoCo explores a new direction to enhance the security of smart contracts

THANKS

SmartCoCo: Checking Comment-code Inconsistency in Smart
Contracts via Constraint Propagation and Binding

Email: haosch@mail2.sysu.edu.cn

	幻灯片 1
	幻灯片 2: Smart Contract
	幻灯片 3: Smart Contract Development
	幻灯片 4: Smart Contract Development
	幻灯片 5: Comment-code Inconsistency
	幻灯片 6: Comment-code Inconsistency
	幻灯片 7: Comment-code Inconsistency
	幻灯片 8: Comment-code Inconsistency
	幻灯片 9: Comment-code Inconsistency
	幻灯片 10: Problem Statement
	幻灯片 11: SmartCoCo
	幻灯片 12: Comment Constraint Extraction
	幻灯片 13: Comment Constraint Extraction
	幻灯片 14: Code Fact Extraction
	幻灯片 15: Constraint Propagation and Binding
	幻灯片 16: Constraint Propagation and Binding
	幻灯片 17: Constraint Propagation and Binding
	幻灯片 18: Inconsistency Detection
	幻灯片 19: Evaluation
	幻灯片 20: Evaluation Setup
	幻灯片 21: Prevalence
	幻灯片 22: Prevalence
	幻灯片 23: Precision
	幻灯片 24: Precision
	幻灯片 25: Performance
	幻灯片 26: Summary
	幻灯片 27

